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Abstract

The proposed scheme, which is a conservative form of the interpolated differential operator scheme (IDO-CF), can pro-
vide high accurate solutions for both compressible and incompressible fluid equations. Spatial discretizations with fourth-
order accuracy are derived from interpolation functions locally constructed by both cell-integrated values and point values.
These values are coupled and time-integrated by solving fluid equations in the flux forms for the cell-integrated values and
in the derivative forms for the point values. The IDO-CF scheme exactly conserves mass, momentum, and energy, retain-
ing the high resolution more than the non-conservative form of the IDO scheme. A direct numerical simulation of turbu-
lence is carried out with comparable accuracy to that of spectral methods. Benchmark tests of Riemann problems and
lid-driven cavity flows show that the IDO-CF scheme is immensely promising in compressible and incompressible fluid
dynamics studies.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In many problems of complex flows involving turbulence, multi-phase fluid, and fluid–structure interaction,
numerical schemes are required to resolve a wide range of wavenumbers, and the use of multi-moment
schemes would be one of the successful solutions. Multi-moments, that is, not only point value of a physical
variable but also its spatial derivative or cell-integrated value, are time-integrated as dependent variables of
governing equations. In constrained interpolation profile (CIP) scheme [1,2], which is a multi-moment
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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semi-Lagrangian scheme of hyperbolic equations, solution profile in a cell is approximated by local third-order
Hermite interpolation function, constructed by the point values and the spatial derivatives. Even for high
wavenumbers, since the interpolation function becomes good approximated profile, both the wave speed
and amplitude are accurately estimated by the semi-Lagrangian procedure [3]. The CIP scheme has extensively
contributed to analyses of scientific and engineering problems [4–8].

Interpolated differential operator (IDO) scheme [9,10], which is also based on multi-moments time integra-
tion, is an Eulerian scheme for solving hyperbolic, parabolic, and elliptic equations. Fluid equations described
by the primitive variables are discretized in non-conservative forms by applying differential operators to local
interpolation functions. The IDO scheme has higher resolution property than fourth-order compact difference
(CD) scheme [11] for all the terms of fluid equations [12], and that makes it possible to obtain comparable
results with spectral methods for direct numerical simulation (DNS) of uniform isotropic turbulence [13]. A
disadvantage of the IDO scheme is a lack of exact conservation. Although conservation of numerical solutions
is kept well and practically acceptable [14], exact conservation is required in some cases such as shock captur-
ing, multi-phase flow and long-time integration.

Finite volume (FV) formulation, which represents fluid equations for cell-integrated values in flux form, is
inherently conservative. In recent years, high-order FV schemes based on compact difference approach have
been reported [15–17]. In also CIP framework, conservative schemes have been proposed [18–20], in which
cell-integrated value and point value are used as multi-moments. The conservative schemes, so-called CIP con-
servative semi-Lagrangian (CIP–CSL) employ flux form discretization for the cell-integrated value while the
point value is calculated in non-conservative form. The CIP–CSL schemes and its extension to FV formulation
[21] have demonstrated some superior results to the conventional CIP scheme, particularly in analyzing multi-
phase flows [22]. In multi-dimensional cases, semi-Lagrangian procedure of the CIP–CSL schemes has diffi-
culty estimating advection fluxes from multi-dimensional interpolation, and thus alternatively directional
splitting is adopted. The directional splitting however introduces phase errors to the numerical results.

We propose the IDO scheme in conservative form (IDO-CF) using the cell-integrated values and the point
values in multi-moments time integration as well as the CIP–CSL schemes. In contrast to the CIP–CSL
schemes, Eulerian approach of the IDO-CF scheme straightforwardly discretizes multi-dimensional fluid
equations without directional splitting. Moreover, high-order discretizations of both advection and non-
advection terms with the same procedure can promise highly resolved solutions for complex flow problems.
Although the proposed scheme may be applicable to any partial differential equations, the paper focuses
on compressible and incompressible fluid equations.

2. The IDO-CF scheme

We consider the conservation laws for compressible fluid in one-dimension:
oQ

ot
þ oF

ox
¼ 0;

Q ¼
q

m

e

2
64

3
75; F ¼

qu

muþ p

euþ pu

2
64

3
75; ð1Þ
where the notation t refers to the time, x the spatial coordinate, q the density, m = qu the momentum, e the
total energy, u the velocity and p is the pressure. The one-dimensional computational domain is divided into
finite-number cells in which the cell i is defined with the cell interfaces i � 1/2 and i + 1/2, where i = 1, 2, . . .,N.
In the IDO-CF scheme, the cell-integrated value (line-integrated value in one-dimensional case)
xQi �

R xiþ1=2

xi�1=2
Qdx is time-integrated at the cell i as a dependent variable. We adopt collocated grid configura-

tion, that is, the cell-integrated values of the density, the momentum, and the energy are defined at the same
location for the cell. Integrating Eq. (1) over the cell i, we have semi-discretized equation for the cell-integrated
value:
o

ot
xQi ¼ �Fiþ1=2 þ Fi�1=2: ð2Þ
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The IDO-CF scheme also defines the point value Qi+1/2 at the cell interface (grid point) i + 1/2 as an addi-
tional time-integrated variable. For the point value, Eq. (1) leads to
o

ot
Qiþ1=2 ¼ �

oF

oxiþ1=2
: ð3Þ
Both the equations are solved as coupled equations. While Eq. (3) for the point value is solved in the non-con-
servative form, Eq. (2) for the cell-integrated value is in the flux form. Thus, the cell-integrated values of mass,
momentum, and total energy are exactly conserved. The cell-integrated values and point values of primitive
variables u and p can be calculated by using the time-integrated variables q, m and e. The fluxes in Eq. (2)
are simply discretized by substituting the point values given at the cell interface:
Fiþ1=2 ¼
qiþ1=2uiþ1=2

miþ1=2uiþ1=2 þ piþ1=2

eiþ1=2uiþ1=2 þ piþ1=2uiþ1=2

2
64

3
75: ð4Þ
The right-hand side of Eq. (3), however, contains unknown spatial derivatives as follows:
oF

oxiþ1=2
¼

uiþ1=2
oq
oxiþ1=2

þ qiþ1=2
ou
oxiþ1=2

uiþ1=2
om
ox iþ1=2

þ miþ1=2
ou
oxiþ1=2

þ op
oxiþ1=2

uiþ1=2
oe
oxiþ1=2

þ eiþ1=2
ou
oxiþ1=2

þ uiþ1=2
op
oxiþ1=2

þ piþ1=2
ou
oxiþ1=2

2
664

3
775: ð5Þ
These derivatives must be approximated. We apply two kinds of discretization method selectively, taking ac-
count of the flow characteristics: central discretization and upwind discretization. Eq. (5) is then rewritten as
oF

oxiþ1=2
¼

uiþ1=2
oq
ox

UP

iþ1=2
þ qiþ1=2

ou
ox

C

iþ1=2

uiþ1=2
om
ox

UP

iþ1=2
þ miþ1=2

ou
ox

C

iþ1=2
þ op

ox

C

iþ1=2

uiþ1=2
oe
ox

UP

iþ1=2
þ eiþ1=2

ou
ox

C

iþ1=2
þ uiþ1=2

op
ox

C

iþ1=2
þ piþ1=2

ou
ox

C

iþ1=2

2
6664

3
7775; ð6Þ
where the superscript C and UP represent the central discretization and the upwind discretization described in
the following section.

2.1. Derivative discretization

According to the concept of the IDO scheme [9], discretized expressions for spatial derivatives of a variable
/(x) are derived from an interpolation function U(X) constructed in local domain by using both the cell-inte-
grated values and the point values, where X = x � xi+1/2. When the interpolation function is accurate enough,
the spatial profile of /(x) in local domain can be approximated as /(x) � U(X). Differentiating the interpola-
tion function, we have also spatial profile of derivatives. By substituting X = 0, the derivatives at the cell-inter-
face is expressed as
ok/
oxk iþ1=2

¼ okU

oX k
iþ1=2

; ð7Þ
where the notation k represents an order of derivative. Although many mathematical functions are applicable
to the interpolation function, in this paper we use a high-order polynomial:
UðX Þ ¼
X

k

AkX k ð8Þ
and the derivative approximation (7) reduces to
ok/
oxk iþ1=2

¼ okU

oX k
iþ1=2
¼ k!Ak: ð9Þ
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2.1.1. Central discretization

For the central discretizations, the interpolation function covers the both-side cells from the viewpoint of
x = xi+1/2. The IDO-CF scheme uses the following fourth-order polynomial for the local domain xi�1/2

6 x 6 xi+3/2:
UCðX Þ ¼ a4X 4 þ a3X 3 þ a2X 2 þ a1X þ /iþ1=2; ð10Þ

where the superscript C represents the interpolation function for the central discretizations. The four unknown
coefficients of Eq. (10) can be determined by the four constraints UC(hp) = /i+3/2, UC(�hm) = /i�1/2,R 0

�hm
UC dX ¼ x/i, and

R hp

0 UC dX ¼ x/iþ1, where hp = xi+3/2 � xi+1/2 and hm = xi+1/2 � xi�1/2. In the case of
the uniform meshes hp = hm = h, we have the central discretizations of derivatives using Eq. (9):
o/
ox

C

iþ1=2
¼ 2

h2
ðx/iþ1 � x/iÞ �

1

2h
ð/iþ3=2 � /i�1=2Þ; ð11Þ

o
2/

ox2

C

iþ1=2
¼ 15

2h3
ðx/iþ1 þ x/iÞ �

3

2h2
ð/iþ3=2 þ 8/iþ1=2 þ /i�1=2Þ; ð12Þ

o
3/

ox3

C

iþ1=2
¼ � 12

h4
ðx/iþ1 � x/iÞ þ

6

h3
ð/iþ3=2 � /i�1=2Þ; ð13Þ

o4/
ox4

C

iþ1=2
¼ � 90

h5
ðx/iþ1 þ x/iÞ þ

30

h4
ð/iþ3=2 þ 4/iþ1=2 þ /i�1=2Þ: ð14Þ
The truncation errors of these discretizations are described in Appendix 1.

2.1.2. Upwind discretization

The central discretization can cause numerical oscillations in the calculation of advection terms, in partic-
ular for high wavenumber profile. The upwind discretization is used for avoiding the numerical oscillations.
Considering characteristics of the advection, we construct the upwind interpolation function UUP(X) for a
half-side cell in the upwind direction, which is used in CIP–CSL2 scheme [19]:
UUPðX Þ ¼ b2X 2 þ b1X þ /iþ1=2: ð15Þ
If the advection velocity u is negative at the cell surface i + 1/2, the constraints of UUP(h)=/i+3/2 andR h
0

UUP dX ¼ x/iþ1 determine the coefficients b1 and b2 in Eq. (15) and the following discretizations are derived:
o/
ox

UP

iþ1=2
¼ 6

h2
x/iþ1 �

2

h
ð/iþ3=2 þ 2/iþ1=2Þ; ð16Þ

o
2/

ox2

UP

iþ1=2
¼ � 12

h3
x/iþ1 þ

6

h2
ð/iþ3=2 þ /iþ1=2Þ: ð17Þ
On the other hand, the advection velocity is positive, we have
o/
ox

UP

iþ1=2
¼ � 6

h2
x/i þ

2

h
ð2/iþ1=2 þ /i�1=2Þ; ð18Þ

o2/
ox2

UP

iþ1=2
¼ � 12

h3
x/i þ

6

h2
ð/iþ1=2 þ /i�1=2Þ ð19Þ
with the constraints of UUP(�h)=/i�1/2 and
R 0

�h UUP dX ¼ x/i. The upwind discretization includes numerical
viscosity shown in Appendix 2.

2.2. Primitive variable

The non-conservative primitive variables u and p appear in the flux terms of the Euler equations (1). In gen-
eral, the pressure is determined by the equation of state (EOS) as functions of the density and the internal
energy per unit mass e = e/q � u2/2:
p ¼ EOSðq; eÞ: ð20Þ
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When the fluid is assumed to be ideal gas, the EOS is
p ¼ ðc� 1Þqe; ð21Þ

where the notation c is the specific heat ratio. The point values of the primitive variables are simply calculated
by using the given point values of the density, the momentum, and the total energy:
uiþ1=2 ¼
miþ1=2

qiþ1=2

; piþ1=2 ¼ EOS qiþ1=2;
eiþ1=2

qiþ1=2

�
u2

iþ1=2

2

 !
: ð22Þ
In the calculation of the cell-integrated values of the primitive variables
xui ¼ x m
q

� �
i

; xpi ¼ xEOSðq; eÞi; ð23Þ
we apply the Simpson integration. First, the point values of the density, the momentum, and the energy at the
cell-centered point are interpolated using CIP–CSL2 interpolation function covering the cell:
UINðX Þ ¼ c2X 2 þ c1X þ c0; ð24Þ

where X = x � xi�1/2. From the constraints of UIN(0) = /i�1/2, UIN(h) = /i+1/2, and

R h
0

UIN dX ¼ x/i, we have
UINðX Þ ¼ �6
X
h

� �2

þ 6
X
h

� � !
x/i

h
þ 3

X
h

� �2

� 2
X
h

� � !
/iþ1=2 þ 3

X
h

� �2

� 4
X
h

� �
þ 1

 !
/i�1=2: ð25Þ
By substituting X = h/2 into Eq. (25), the cell-centered value /IN
ic is interpolated as
/IN
ic ¼

3

2

x/i

h
� 1

4
ð/iþ1=2 þ /i�1=2Þ; ð26Þ
where the truncation error is fourth-order as shown in Appendix 3. The cell-centered values of qIN
ic , mIN

ic , and
eIN

ic give the cell-centered values of the velocity and the pressure:
uIN
ic ¼

mIN
ic

qIN
ic
; pIN

ic ¼ EOSðqIN
ic ; e

IN
ic Þ; ð27Þ
where
eIN
ic ¼

eIN
ic

qIN
ic
� ðu

IN
ic Þ

2

2
: ð28Þ
Then, the Simpson integration leads to
xui ¼
h
6
ðuiþ1=2 þ 4uIN

ic þ ui�1=2Þ; xpi ¼
h
6
ðpiþ1=2 þ 4pIN

ic þ pi�1=2Þ: ð29Þ
This procedure can be applied even to a tabular EOS. The truncation errors of the primitive variables are pre-
sented in Appendix 4.

2.3. Time integration

A simple way to time-integrate Eqs. (2) and (3) with high accuracy is to use the Runge–Kutta method:

xQnþ1

i ¼ xQn
i þ

X
p

bp
xkp

i Dt; ð30Þ

Qnþ1
iþ1=2 ¼ Qn

iþ1=2 þ
X

p

bpkp
iþ1=2Dt; ð31Þ
where
xkp
i ¼

o

ot
xQp

i ; ð32Þ

kp
iþ1=2 ¼

o

ot
Qp

iþ1=2; ð33Þ
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xQp
i ¼ xQn

i þ
X

q

apq
xkq

i Dt; ð34Þ

Qp
iþ1=2 ¼ Qn

iþ1=2 þ
X

q

apqkq
iþ1=2Dt; ð35Þ
xkp
i and kp

iþ1=2 are the time derivatives in the stage number p of the Runge–Kutta method, apq and bp are
weighted coefficients, and n is the time step index. We use the following coefficients:

For the first-order method, being identical to the first-order finite difference in time:
p ¼ 1; a11 ¼ 0; b1 ¼ 1: ð36Þ

For the second-order method:
p ¼ 1; 2;
a11 a12

a21 a22

� �
¼

0 0

1 0

� �
;

b1

b2

� �
¼

1=2

1=2

� �
: ð37Þ
For the third-order method:
p ¼ 1; 2; 3;

a11 a12 a13

a21 a22 a23

a31 a32 a33

0
B@

1
CA ¼

0 0 0

2=3 0 0

0 2=3 0

0
B@

1
CA;

b1

b2

b3

0
B@

1
CA ¼

1=4

3=8

3=8

0
B@

1
CA: ð38Þ
For the fourth-order method:
p ¼ 1; 2; 3; 4;

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

0
BBB@

1
CCCA ¼

0 0 0 0

1=2 0 0 0

0 1=2 0 0

0 0 1 0

0
BBB@

1
CCCA;

b1

b2

b3

b4

0
BBB@

1
CCCA ¼

1=6

1=3

1=3

1=6

0
BBB@

1
CCCA: ð39Þ
2.4. Multi-dimension

The IDO-CF scheme in one-dimension can be extended to multi-dimensional problems straightforwardly.
Consider the two-dimensional Euler equations for compressible fluid:
oQ

ot
þ oE

ox
þ oF

oy
¼ 0;

Q ¼

q

mx

my

e

2
6664

3
7775; E ¼

qu

mxuþ p

myu

euþ pu

2
6664

3
7775; F ¼

qv

mxv

myvþ p

evþ pv

2
6664

3
7775;

ð40Þ
where mx = qu and my = qv. The IDO-CF scheme in two-dimension defines the cell-integrated
(surface-integrated) value xyQi;j �

R yjþ1=2

yj�1=2

R xiþ1=2

xi�1=2
Qdxdy, the line-integrated values xQi;jþ1=2 �

R xiþ1=2

xj�1=2
Qdx,

yQiþ1=2;j �
R yjþ1=2

yj�1=2
Qdy, and the point value Qi+1/2,j+1/2 as time-integrated variables. Fig. 1 shows the configu-

ration of these values. We solve the following equations derived from Eq. (40):
o

ot
xyQi;j ¼ �yEiþ1=2;j þ yEi�1=2;j � xFi;jþ1=2 þ xFi;j�1=2; ð41Þ

o

ot
xQi;jþ1=2 ¼ �Eiþ1=2;j þ Ei�1=2;j � xoF

oy i;jþ1=2

; ð42Þ

o

ot
yQiþ1=2;j ¼ �yoE

ox iþ1=2;j
� Fi;jþ1=2 þ Fi;j�1=2; ð43Þ

o

ot
Qiþ1=2;jþ1=2 ¼ �

oE

ox iþ1=2;jþ1=2
� oF

oy iþ1=2;jþ1=2

: ð44Þ
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Most terms in the above equations can be discretized using the same procedure with that of the one-dimen-
sional Euler equations. In contrast to the one-dimensional case, the line integrals of the fluxes including non-
linear terms as /u appear in Eq. (41), for example, the first term of the right hand side is
yEiþ1=2;j ¼

yðquÞLI
iþ1=2;j

yðmxuÞLI
iþ1=2;j þ ypiþ1=2;j

yðmyuÞLI
iþ1=2;j

yðeuÞLI
iþ1=2;j þ yðpuÞLI

iþ1=2;j

2
666664

3
777775; ð45Þ
where the superscript LI represents the line integral approximation. For high-order approximation of such
nonlinear terms, we use the interpolation function (24), and the line integral of the nonlinear term can be ex-
pressed as
yð/uÞLI
j ¼

Z h

0

UINðY ÞU INðY ÞdY : ð46Þ
The line integral has fifth-order accuracy (see Appendix 5). The expression can be simplified as a matrix form:
yð/uÞLI
j ¼ /j�1=2

y/j

h /jþ1=2

� �
X

uj�1=2

yuj=h

ujþ1=2

0
B@

1
CA; ð47Þ
where
X ¼ h
30

4 �3 �1

�3 36 �3

�1 �3 4

0
B@

1
CA:
Eqs. (42) and (43) also involve the line-integral of nonlinear terms x(o/v/oy)=x(vo //oy + /ov/oy) as
xoF

oy i;jþ1=2

¼

xoqv
oy

LI

i;jþ1=2

xomxv
oy

LI

i;jþ1=2

xomy v
oy

LI

i;jþ1=2
þ oðxpÞ

oy

C

i;jþ1=2

xoev
oy

LI

i;jþ1=2
þ xopv

oy

LI

i;jþ1=2

2
666666664

3
777777775
¼

x q ov
oy þ v oq

oy

� �LI

i;jþ1=2

x mx
ov
oy þ v omx

oy

� �LI

i;jþ1=2

x my
ov
oy þ v ov

oy

� �LI

i;jþ1=2
þ oðxpÞ

oy

C

i;jþ1=2

x e ov
oy þ v oe

oy

� �LI

i;jþ1=2
þ x p ov

oy þ v op
oy

� �LI

i;jþ1=2

2
66666666664

3
77777777775
: ð48Þ
ji
xy

,Q ji
y

,21+Q

21, +ji
x Q

21, ji
x Q

21,21 ++ jiQ

21,21+ jiQ

ji
y

,21Q

21,21 +jiQ

21,21 jiQ

ji
xy

,Q ji
y

,21+Q

21, +ji
x Q

21, −ji
x Q

21,21 ++ jiQ

21,21 −⎯+ jiQ

ji
y

,21−Q

21,21 +− jiQ

21,21 −− jiQ

Fig. 1. Configuration of time-integrated variables.
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The approximation procedure of the terms is divided into two steps. First, we calculate the line-integrated val-
ues x(o//oy)i and x(ov/oy)i, and the point values o//oyi±1/2 and ov/oyi±1/2. We apply the upwind discretization
to x(o//oy)i and o//oyi±1/2, and the central discretization to x(ov/oy)i and ov/oyi±1/2, where we regard x(o//oy)i

as the derivative of x/, e.g.
oðx/Þ
oy

UP

i;jþ1=2

¼ 6

h2
xy/i;jþ1 �

2

h
ðx/i;jþ3=2 þ 2x/i;jþ1=2Þ: ð49Þ
Then, applying Eq. (47) to these values, we obtain the line-integral as
x o/v
oy

� �LI

i

¼ x /
ov
oy

� �LI

i

þ x v
o/
oy

� �LI

i

; ð50Þ
where
x /
ov
oy

� �LI

i

¼ /i�1=2

x/i
h /iþ1=2

� �
X

ov
oy

C

i�1=2

xov
oy

C

i
=h

ov
oy

C

iþ1=2

0
BBB@

1
CCCA
and
x v
o/
oy

� �LI

i

¼ vi�1=2
xvi
h viþ1=2

� �
X

o/
oy

UP

i�1=2

xo/
oy

UP

i
=h

o/
oy

UP

iþ1=2

0
BBBB@

1
CCCCA:
In the previous section, we have shown the approximations of the point values and the line-integrated val-
ues of primitive variables. In calculating the surface-integrated values of primitive variables, the Simpson inte-
gration is introduced such as
xyui;j ¼
h
6
ðxui;jþ1=2 þ 4xui;jc þ xui;j�1=2Þ; ð51Þ
where the line-integrated values in Eq. (51) can be obtained from Eq. (29).

2.5. Incompressible flow

The governing equations for two-dimensional incompressible Newtonian fluid are described as the follow-
ing divergence free condition and Navier–Stokes equation:
ou
ox
þ ov

oy
¼ 0; ð52Þ

ou

ot
¼ � oE

ox
� oF

oy
;

u ¼
u

v

� 	
; E ¼

u2 þ p � 1
Re

ou
ox

uv� 1
Re

ov
ox

" #
; F ¼

uv� 1
Re

ou
oy

v2 þ p � 1
Re

ov
oy

" #
: ð53Þ
The divergence of Eq. (53) should be satisfied with the divergence free condition:
r � ou

ot
¼ o

ot
ðr � uÞ ¼ 0: ð54Þ
We apply a semi-implicit procedure like Simplified Marker-And-Cell (SMAC) method [23,24] to the solution
of the Navier–Stokes equation. First, we calculate pseudo-time derivatives relating to advection and viscous
terms with the similar way to the Euler equations:
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o

ot
xyu�i;j ¼ �yE�iþ1=2;j þ yE�i�1=2;j � xF�i;jþ1=2 þ xF�i;j�1=2; ð55Þ

o

ot
xu�i;jþ1=2 ¼ �E�iþ1=2;j þ E�i�1=2;j � xoF

oy

�

i;jþ1=2

; ð56Þ

o

ot
yu�iþ1=2;j ¼ �

yoE

ox

�

iþ1=2;j
� F�i;jþ1=2 þ F�i;j�1=2; ð57Þ

o

ot
u�iþ1=2;jþ1=2 ¼ �

oE

ox

�

iþ1=2;jþ1=2
� oF

oy

�

iþ1=2;jþ1=2

; ð58Þ
where
E� ¼
u2 � 1

Re
ou
ox

uv� 1
Re

ov
ox

" #
; F� ¼

uv� 1
Re

ou
oy

v2 � 1
Re

ov
oy

" #
;

and the viscous terms are discretized by using the central discretizations. The pressure Poisson equation is de-
rived from Eq. (54):
r � ou

ot
¼ r � ou

ot

�
� r � ðrpÞ ¼ 0: ð59Þ
The integral operation to Eq. (59) makes the following coupled equations for the cell-integrated, line-inte-
grated, and point values:
oðypÞ
ox

C

iþ1=2;j
� oðypÞ

ox

C

i�1=2;j
þ oðxpÞ

oy

C
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� oðxpÞ
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C
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¼ xysi;j; ð60Þ
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o2ðypÞ
ox2

C

iþ1=2;j
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þ o2p

oy2
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¼ siþ1=2;jþ1=2: ð63Þ
The source terms xysi,j,
xsi,j+1/2, ysi+1/2,j, and si+1/2,j+1/2 are
xysi;j ¼
o

ot
yu�iþ1=2;j �

o

ot
yu�i�1=2;j þ

o

ot
xv�i;jþ1=2 �

o

ot
xv�i;j�1=2; ð64Þ
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siþ1=2;jþ1=2 ¼
o

ox
ou
ot
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�� �C
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: ð67Þ
These source terms are estimated by the pseudo-time derivatives. Eqs. (60)–(63) can be solved by using iter-
ation methods such as SOR, BiCGStab [25], and the pressure field is obtained. Adding the pressure gradient
terms to the pseudo-time derivatives, we have the correct time derivatives with the divergence free, for
example,
o

ot
xyui;j ¼

o

ot
xyu�i;j � ypiþ1=2;j þ ypi�1=2;j; ð68Þ

o

ot
xui;jþ1=2 ¼

o

ot
xu�i;jþ1=2 � piþ1=2;jþ1=2 þ pi�1=2;jþ1=2; ð69Þ
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o
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ox
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; ð70Þ
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u�iþ1=2;jþ1=2 �
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ox

C

iþ1=2;jþ1=2
: ð71Þ
It is found that the Navier–Stokes equation can be reduced to a complete divergence free form for the cell. The
velocity field in each stage of Runge–Kutta time integration can be satisfied with the divergence free condition.

2.6. Velocity–pressure coupling

Numerical coupling between velocity field and pressure field is an important issue in numerical schemes.
Since the collocated configuration of velocity and pressure (collocated grids) generally shows low numerical
coupling, staggered grids or special discretizations are often applied. In the non-conservative form of the
IDO (IDO-NCF) scheme, we use special discretizations called stable coupling method for computations on
collocated grids [13]. In the IDO-CF scheme, both the compressible and incompressible fluid equations are
solved on collocated grids for velocity and pressure, where their cell-integrated values and point values have
a staggered configuration as shown in Fig. 1. The configuration guarantees tight coupling between velocity
and pressure without any stable coupling methods as used in the IDO-NCF scheme.

3. Fourier analysis

In the paper [12], we presented the Fourier analysis method for the IDO-NCF scheme to evaluate stability
and accuracy in solving linear partial differential equations. The method is also applicable to the IDO-CF
scheme. This section provides the stability and the accuracy for solutions of advection, diffusion, and Poisson
equations.

3.1. Advection equation

The one-dimensional advection equation with the constant velocity u is considered:
o/
ot
¼ � o

ox
ðu/Þ: ð72Þ
When the spatial profile of a dependent variable /(x) is assumed to be periodic over the domain [0, L] with
uniform grid spacing h = L/N, the dependent variable is decomposed into Fourier series,
/ðxÞ ¼
X

k

/̂ðkÞeiwx=h; ð73Þ
where i ¼
ffiffiffiffiffiffiffi
�1
p

, and w = 2pkh/L is a scaled wavenumber. The integrated value of the dependent variable is
also decomposed as
Z

/ðxÞdx ¼
X

k

x/̂ðkÞeiwx=h: ð74Þ
Using the same procedure in [12], we can describe the time integration in the following matrix form:
x/̂ðkÞnþ1

/̂ðkÞnþ1

 !
¼ S

x/̂ðkÞn

/̂ðkÞn

 !
¼ L

kþ 0

0 k�

� �n

L�1
x/̂ðkÞ0

/̂ðkÞ0

 !
; ð75Þ
where L ¼ Kþ K�
� �

, LL�1 = I, and k± and K± are eigenvalues and eigenvectors of S. The matrix S is ex-
actly same with that of the IDO-NCF scheme. The stability condition requires the absolute values of the eigen-
values are less than unity for all the wavenumbers. Figs. 2 and 3 show the Courant number limitation related
to the stability condition for the central discretization and the upwind discretization, respectively. The Cou-
rant number is determined by C = |u|Dt/h. First-order Runge–Kutta time integration is absolutely unstable for
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Fig. 2. Contour plots of eigenvalues for time integration of advection equation by central discretization: (a) first-order Runge–Kutta; (b)
second-order Runge–Kutta; (c) third-order Runge–Kutta; and (d) fourth-order Runge–Kutta.
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both the discretizations. Higher-order Runge–Kutta method enlarges Courant number limitation, and the
maximum Courant number is defined as 0.86 for the central discretization with the fourth-order Runge–Kutta
method, and that of the upwind discretization is 0.42. Numerical phase for the advection calculation is pre-
sented in Fig. 4a. As references, the phases of the fourth-order CD scheme and the sixth-order combined com-
pact difference (CCD) scheme [26] are also shown. The IDO-CF scheme provides accurate phase for a wide
range of wavenumbers in comparison with the CD and CCD schemes. Numerical gain shown in Fig. 4b pre-
sents that the central discretization has no numerical dissipation and the upwind discretization gives less dis-
sipative solutions than the third-order upwind finite difference (FD) scheme. As illustrated in Fig. 5, the phase
errors of both the central and upwind discretizations, and also the gain errors of the upwind discretization
have fourth-order convergence.
3.2. Diffusion equation

We examine the solution of the one-dimensional diffusion equation:
o/
ot
¼ � o

ox
�l

o/
ox

� �
; ð76Þ
where the diffusion coefficient l is a constant. For the time integration of the equation given by Eq. (75), the
eigenvalues of the diffusion equation are plotted in Fig. 6, where the diffusion number is D = lDt/h2. The use
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Fig. 3. Contour plots of eigenvalues for time integration of advection equation by upwind discretization: (a) first-order Runge–Kutta; (b)
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of high-order Runge–Kutta method increases diffusion number limit. For the fourth-order Runge–Kutta
method, we can define the maximum diffusion number as 0.18. Fig. 7 shows the numerical errors. The
IDO-CF scheme has fourth-order accuracy and the errors are less than other fourth-order schemes for all
the wavenumbers.

3.3. Poisson equation

Poisson equation for pressure field has an important role in solving incompressible fluid equations. The fol-
lowing one-dimensional Poisson equation is considered:
� o

ox
� o/

ox

� �
¼ s; ð77Þ
where s is the source term. The solution of the Poisson equation is expressed as
x/̂nðkÞ ¼ T ðwÞx/̂ðkÞ; ð78Þ

where the function T(w) is the transfer function, representing the ratio of the numerical solution to the exact
solution. The transfer function of the IDO-CF scheme follows the exact solution more closely than other
schemes. The errors of the Poisson equation also have fourth-order convergence as shown in Fig. 8.
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4. Numerical results

4.1. One-dimensional Riemann problem

As is commonly used, we examine the one-dimensional Riemann problem by Sod [27]. The initial condi-
tions for this problem are given by the following primitive variables:
q u pð Þ ¼
ð1:0 0:0 1:0Þ for x 6 1:0

ð0:125 0:0 0:1Þ for x > 1:0

�
: ð79Þ
The fluid is assumed to be ideal gas, and the specific heat ratio is c = 1.4. In this computation, we add an arti-
ficial viscosity described in Appendix 6 to the compressed region. Fig. 9 illustrates computed density and pres-
sure profiles at t = 0.5 with exact solutions, where the cell size is h = 1/100 and the Courant number is |u|Dt/
h = 0.3. Both the density and pressure profiles are consistent with those of the exact solutions. Fig. 10a shows
the magnified view of the density profile around the contact discontinuity. Small overshooting and under-
shooting are observed at the contact discontinuity. In order to remove the non-physical oscillations, such
monotone functions as a rational function proposed by Xiao et al. [28] are applicable to the discretizations
of advection terms. In Fig. 10b, we present the computed density profile by the IDO-CF scheme with the
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Fig. 9. Numerical result of the one-dimensional Riemann problem: (a) density and (b) pressure.
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rational function. It is found that the density profile has no oscillation at the contact discontinuity, while the
profile in the other region has consistency with the exact profile.

4.2. Two-dimensional Riemann problem

Two-dimensional Riemann problems proposed in [29] are used to demonstrate the estimation for multi-
dimensional compressible fluid dynamics. Square computational domain [0,1] � [0, 1] is initially divided into
four quadrants, where each quadrant has different initial states ql ul vl plð Þ as illustrated in Fig. 11a. The
initial states are set so that only a forward shock wave ~Slr, a backward shock wave S

 
lr, a forward rarefaction

wave R
 

lr, a backward rarefaction wave R
 

lr, a negative contact discontinuity J�lr or a positive constant discon-
tinuity Jþlr connects two neighboring states. The fluid is assumed to be ideal gas with the specific heat ratio
c = 1.4. Fig. 11b shows the density contours at t = 0.25 for Configuration D in Ref. [29], where the rarefaction
and the contact discontinuities are interacted: R

 
21J�32J�34R

 
41. The initial conditions are given by

Configuration D:
Fig. 11
Config
ql ul vl plð Þ ¼

ð 0:5197 0:1 0:1 0:4 Þ for l ¼ 1

ð 1:0 �0:6259 0:1 1:0 Þ for l ¼ 2

ð 0:8 0:1 0:1 1:0 Þ for l ¼ 3

ð 1:0 0:1 �0:6259 1:0 Þ for l ¼ 4

8>>><
>>>:

: ð80Þ
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. Density contours in two-dimensional Riemann problems: (a) initial state; (b) Configuration D; (c) Configuration F; and (d)
uration K in [29].
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The Courant number is |u|Dt/h = 0.2. In order to compare with the references, we use 400 � 400 cells in this
computation. Both the discontinuities and a circular shock wave are described sharper than those obtained
from other high resolution schemes [29–32]. Fig. 11c and d shows numerical results of other configurations,
Configuration F:~S21Jþ32Jþ34

~S41 at t = 0.25, and Configuration K: Jþ21S
 

32J�34
~R41 at t = 0.3 in [29], where the initial

conditions are
Configuration F:
ql ul vl plð Þ ¼

ð 0:5313 0:0 0:0 0:4 Þ for l ¼ 1

ð 1:0 0:7276 0:0 1:0 Þ for l ¼ 2

ð 0:8 0:0 0:0 1:0 Þ for l ¼ 3

ð 1:0 0:0 0:7276 1:0 Þ for l ¼ 4

8>>><
>>>:

; ð81Þ
Configuration K:
ql ul vl plð Þ ¼

ð 1:0 0:0 0:3 1:0 Þ for l ¼ 1

ð 2:0 0:0 �0:3 1:0 Þ for l ¼ 2

ð 1:0625 0:0 0:2145 0:4 Þ for l ¼ 3

ð 0:5197 0:0 �0:4259 0:4 Þ for l ¼ 4

8>>><
>>>:

: ð82Þ
The Courant numbers are 0.3 and 0.25 for Configuration F and Configuration K, respectively. In also these
cases, the IDO-CF scheme provides the solutions with higher resolutions in comparison with the other
schemes. In particular, vortex structures are well described.

4.3. DNS of incompressible turbulent flow

DNS of turbulent flow is a suitable problem for checking resolution characteristics of numerical schemes in
solving Navier–Stokes equation for incompressible fluid. We have already reported the IDO-NCF scheme has
a resolution comparable to that of the spectral method [33] for two-dimensional DNS of homogeneous iso-
tropic turbulence [13]. Here, we examine the same problem with that of [13], and compare the obtained results
with those of the IDO-NCF and the spectral method. The computed energy spectrum at eddy turnover time
ETT = 1.5 are presented in Fig. 12, where Reynolds number is 10890.8 and 512 � 512 cells are used. The IDO-
CF scheme also retains a resolution comparable to that of the spectral method. Fig. 13 gives the magnified
view of the energy spectrum for high wavenumbers and clearly shows the IDO-CF scheme can resolve high
wavenumbers superior to that of the IDO-NCF scheme. The IDO-CF scheme accurately estimates the energy
spectrum even for over 1300 wavenumbers. As shown in Fig. 14, time evolution of turbulence statistical quan-
tities completely follow the result of the spectral method.
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Fig. 14. Time histories of turbulence statistical quantities: (a) root mean square of the velocity; (b) dissipation; and (c) skewness of the x-
directional velocity.
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4.4. Two-dimensional lid-driven cavity flow

As another benchmark test for incompressible flows, we solve two-dimensional lid-driven cavity flow
problems. Fig. 15 shows steady state velocity profiles for Reynolds number 1000, 3200, and 5000. In the
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Fig. 15. Numerical results of lid-driven cavity flow: (a) Re = 1000 with 32 � 32 cells; (b) Re = 3200 with 40 � 40 cells; and (c) Re = 5000
with 56 � 56 cells.
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computations, we use small number of uniform cells: 32 � 32 cells for Re = 1000; 40 � 40 cells for Re = 3200;
and 56 � 56 cells for Re = 5000. Despite using such coarse cells, the plots are in good agreement with those
presented by Ghia et al. [34], even in the vicinity of the wall.

5. Conclusions

We have presented the conservative form of the IDO (IDO-CF) scheme. In the IDO-CF scheme, cell-inte-
grated values and point values of the mass, the momentum, and the energy are time-integrated by solving cou-
pled conservation equations. The time integration of the cell-integrated values is described in the flux form and
the cell-integrated values are exactly conserved. Fourier analyses for advection, diffusion, and Poisson equa-
tions show that the IDO-CF scheme retains as high resolution property as the IDO-NCF scheme. The effec-
tiveness of the proposed scheme in solving compressible fluid dynamics is confirmed in the solutions of
Riemann problems. The IDO-CF scheme also provides highly resolved solutions for incompressible fluid
dynamics as shown in DNS of turbulent flow and lid-driven cavity flow. In comparison with the IDO-
NCF scheme, the IDO-CF scheme has advantages not only in conservation but also in numerical velocity–
pressure coupling. While the IDO-NCF scheme needs to introduce special discretizations for stable coupling,
in the IDO-CF scheme, the automatically staggered configuration between the cell-integrated values and the
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point values provides stable coupling without any special discretizations. These advantages lead to superior
results for both the compressible and incompressible flow problems. The proposed scheme can extended to
the three-dimensional formulation straightforwardly, where volume integrals are introduced as the conserva-
tive cell-integrated values. The exactly conservation, high resolution, and high stability features of the IDO-
CF scheme immensely promises in advanced compressible and incompressible fluid dynamics studies.

Appendix 1. Truncation error of central discretizations

Using the Taylor series expansion, we can derive the truncation errors of the central discretizations (11)–
(14). At a grid point i + 1/2, the Taylor series of a variable / is described by
/ðxÞ ¼ /ðxiþ1=2Þ þ
X1
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We consider uniform meshes with the cell size h = xi+1/2 � xi�1/2 = xi+3/2 � xi+1/2. The derivatives are derived
using the constraints /(xi+1/2) = /i+1/2, /(xi�1/2) = /i�1/2, /(xi+3/2) = /i+3/2,
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The first and second derivatives include fourth-order truncation errors, while the third and fourth derivatives
have second-order truncation errors.

Appendix 2. Numerical viscosity in upwind discretization

Comparing the upwind discretization with the central discretization, we estimate numerical viscosity
included in the upwind discretizations (16) and (18). When the upwind discretization is expressed as
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The upwind discretization includes the third and fourth derivatives as numerical viscosity.

Appendix 3. Truncation error of CIP–CSL2 interpolation

The following expression is obtained from the Taylor series:
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where X = x � xi�1/2. Here, the interpolated point X can be rewritten by X = sh. The interpolation of the CIP–
CSL2 scheme (24) is found to include third-order truncation error. At the cell-centered point X = h/2, this
interpolation leads to fourth-order expression:
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Appendix 4. Order of accuracy of discretization method for primitive variables

The cell-centered values of the density, the momentum, and the total energy are interpolated with fourth-
order truncation error by using Eq. (A.9). The cell-centered value of the velocity is also described with fourth-
order accuracy:
uðxicÞ ¼
mIN
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qIN

ic þ Oqðh4Þ
¼ uIN

ic þ Ouðh4Þ: ðA:10Þ
The Simpson integration is a fifth-order expression:
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Thus, the velocity is integrated with fifth-order accuracy:
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The truncation error of the pressure depends on the formulation of EOS. In the EOS for ideal gas,
p = q(c � 1)e, the cell-centered value of the pressure has fourth-order accuracy:
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Then, the pressure is integrated with fifth-order truncation error.
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Appendix 5. Order of accuracy of integration method for nonlinear quantities

Using Eq. (A.8), the integration method (47) for nonlinear quantities can be rewritten by
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Since /j�1/2 � /j+1/2 / h and uj�1/2 �uj+1/2 / h,
Z yjþ1=2
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This expression is fifth-order accuracy. The integration method (50) also has fifth-order truncation error re-
spect to mesh size hx in the x-direction. However, the derivatives includes fourth-order truncation error for
hy in the y-direction as shown in Appendix 1. Then the integration method (50) can be expressed as
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Appendix 6. Artificial viscosity for inviscid compressible fluid

In computations of inviscid compressible fluid, we add an artificial viscosity to the compressed region. The
artificial viscosity is included as an additional term in the momentum conservation equations:
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where the notation j represents the artificial viscous coefficient:
jiþ1=2 ¼
0 xuiþ1 P xui
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�
: ðA:20Þ
In this paper, we set the coefficient j0 = 0.1h for both the one- and two-dimensional Riemann problems.
Although diffusion terms in the Navier–Stokes Eq. (53) are solved by using the central discretizations (11)
and (12), the artificial viscous terms are discretized as follows:
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These expressions are derived from the second-order polynomial UA determined by the three constraints of UA

(0)=/i+1/2,
R 0

�h UA dX ¼ x/i, and
R h

0 UA dX ¼ x/iþ1.
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